Fibroids and Infertility: The Added Value of Three-dimensional Ultrasound

JOURNAL TITLE: Donald School Journal of Ultrasound in Obstetrics and Gynecology

Author
1. Sanja Plavsic Kupesic
ISSN
0973-614X
DOI
10.5005/jp-journals-10009-1606
Volume
13
Issue
4
Publishing Year
2019
Pages
9
  • Article keywords
    Infertility, Three-dimensional power Doppler, Three-dimensional ultrasound, Uterine fibroids.

    Abstract

    Uterine fibroids, benign monoclonal tumors of the uterine smooth muscle cells and fibrous connective tissue, are the most common tumors of the female pelvis, occurring in about 20–30% of women of reproductive age. The cumulative rate of uterine fibroids increases with age, with a tendency of slower increase at older reproductive age. Fibroids may be of various sizes, single or multiple, and are described based on their relationship to the uterine cavity. Those located within the myometrium are called intramural and are considered the most common, occurring in about 58–79% of all patients, while the other locations are submucous which eventually may become intracavitary and subserous fibroids. According to the American Society for Reproductive Medicine (ASRM), uterine myomas are associated with infertility in 5–10% of cases and may be responsible for 2–3% of infertility cases. The growth of fibroids during pregnancy cannot be predicted. Majority of the fibroids’ growth occurred in the first trimester. Imaging techniques used for the diagnosis of uterine fibroids include transabdominal and transvaginal two-dimensional (2D) and three-dimensional (3D) ultrasound, saline infusion sonography (SIS), and magnetic resonance imaging (MRI). Sonographic assessment of the uterine fibroids includes determination of their number, location, echotexture, and size, by measuring the three maximum diameters (length, width, and height). Serial examinations are necessary to document the interval growth and change in morphology. Combining the advantages of multiple imaging modalities: ultrasound as a noninvasive, nonirradiation, and inexpensive method, and volume acquisition known from CT and MR imaging technologies, 3D ultrasound and 3D power Doppler angiography have become valuable diagnostic tools for the assessment of uterine fibroids. By providing multiplanar imaging, 3D ultrasound not only gives an additional dimension to the uterine scan but also provides a similar quality and less expensive alternative to MRI. Automated volume acquisition minimizes the subjectivity of the ultrasound assessment and can be used for retrospective analysis.

    © 2019 Jaypee Brothers Medical Publishers (P) LTD.   |   All Rights Reserved